N-Acetylation of paraphenylenediamine in human skin and keratinocytes.

نویسندگان

  • Y Kawakubo
  • H F Merk
  • T A Masaoudi
  • S Sieben
  • B Blömeke
چکیده

Skin is the major target of allergic reactions to paraphenylenediamine (PPD). Such small molecules require activation to become immunogenic. The balance between activation and/or detoxification processes is critical for immunogenic potentials of compounds. Therefore, we investigated N-acetylation (NAT) capacities of human skin for PPD to gain a better understanding of its mechanisms of action. PPD is acetylated to monoacetyl-PPD (MAPPD), which in turn is acetylated to N,N'-diacetyl-PPD (DAPPD). This was found using cytosolic fractions from human skin (n = 9) and cultured normal human epidermal keratinocytes (n = 7). The cutaneous activities for MAPPD formation ranged from 0.41 to 3.68 nmol/mg/min (9-fold variation) and DAPPD formation from 0.65 to 3.25 nmol/mg protein/min (5-fold), respectively. Similar results were obtained with keratinocytes. NAT activities toward both substrates, PPD and MAPPD, were correlated in keratinocytes (r = 0.930), suggesting that the reactions were catalyzed by the same enzyme. Formation of MAPPD and DAPPD was competitively inhibited in the presence of p-aminobenzoic acid (300 microM), a typical NAT1 substrate, but not by sulfamethazine. These kinetic characteristics suggest that the acetylation of PPD in human skin and keratinocytes is predominantly attributable to the polymorphic NAT1, although both mRNAs (NAT1 and NAT2) are synthesized in human skin and keratinocytes. The metabolism of PPD by NAT1 in human skin and keratinocytes as well as the virtual absence of NAT2 activity may have important toxicological implications. In the case of PPD, our results emphasize that N-acetylation status may be a susceptibility factor for the development of an allergy to PPD.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro Co-Culture of Human Skin Keratinocytes and Fibroblasts on a Biocompatible and Biodegradable Scaffold

Background: Extensive full-thickness burns require replacement of both epidermis and dermis. In designing skin replacements, the goal has been to re-create this model and make a product which has both essential components. Methods: In the present study, we developed procedures for establishing confluent, stratified layers of cultured human keratinocytes on the surface of modified collagen-chito...

متن کامل

Isolation and Cultivation of Adult Human Keratinocyte Stem Cells for Regeneration of Epidermal Sheets

Background: Keratinocyte stem cell is one of the adult stem cells that inhabits the skin and contributes to skin function and renewal. Adult stem cells are best defined by their capacity to self-renew, and to maintain tissue function for a long period of time. These findings indicate the importance of these cells for clinical applications including regenerative medicine, tissue engineering and ...

متن کامل

Inactivation of mitogen-activated protein kinase signaling pathway reduces caspase-14 expression in impaired keratinocytes

Objective(s):Several investigations have revealed that caspase-14 is responsible for the epidermal differentiation and cornification, as well as the regulation of moisturizing effect. However, the precise regulation mechanism is still not clear. This study was aimed to investigate the expression of caspase-14 in filaggrin-deficient normal human epidermal keratinocytes (NHEKs) and to explore the...

متن کامل

DIFFERENTIATION OF HUMAN OVARIAN FOLLICULAR GRANULOSA CELLS INTO KERATINOCYTES

Background & Aims: Stem cells are undifferentiated cells and are found in different tissues. These cells have capacity of self-renewal and differentiation into other lineages. Granulosa cells (GCs) are the multipotent stem cells. In the present research we evaluated the differentiation potential of GCs into keratinocytes. Material & Methods: GCs were cultured after enzymatic isolation from ova...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 292 1  شماره 

صفحات  -

تاریخ انتشار 2000